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The Edwards model in one dimension is a transformed path measure for one-
dimensional Brownian motion discouraging self-intersections. We study the con-
stants appearing in the central limit theorem (CLT) for the endpoint of the path
(which represent the mean and the variance) and the exponential rate of the
normalizing constant. The same constants appear in the weak-interaction limit
of the one-dimensional Domb-Joyce model. The Domb-Joyce model is the dis-
crete analogue of the Edwards model based on simple random walk, where each
self-intersection of the random walk path recieves a penalty e - 2 / ! . We prove that
the variance is strictly smaller than 1, which shows that the weak interaction
limits of the variances in both CLTs are singular. The proofs are based on
bounds for the eigenvalues of a certain one-parameter family of Sturm-Liouville
differential operators, obtained by using monotonicity of the zeros of the eigen-
functions in combination with computer plots.
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1. MOTIVATION AND MAIN RESULTS

1.1. The Edwards Model

Let (5 t) t > 0 be standard one-dimensional Brownian motion starting at 0.
Let P denote its distribution on path space and £ the corresponding expec-
tation. The Edwards model is a transformed path measure discouraging self-
intersections, defined by the intuitive formula
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Here <£ denotes Dirac's function, j3e(0, oo) is the strength of self-repellence
and 2£ is the normalizing constant. A rigorous definition of P%. can be
given in terms of Brownian local times, namely

Theorem 1 (van der Hofstad, den Hollander, and K6nig(5)). For
every /? e (0, oo)

The simple dependence on ft of the mean, the variance and the exponential
rate of the normalizing constant in Theorem 1 follows from Brownian
scaling (see van der Hofstad, den Hollander, and K6nig(5) Section 0.3).

2 The operator JTa is a scaled version of the operator ya originally analyzed in van der
Hofstad and den Hollander(4) Section 5, namely (.yfx)(u) = (Seax)(ul1) where x(u) = x(2u).

and
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where L(T, x) is the local time at x until time T. In van der Hofstad, den
Hollander and K6nig(5) a central limit theorem (CLT) is proved for the
Edwards model. To formulate this we have to introduce some notation.
For aeU, define Jfa: L2(K0

+) n C2(R£) -> C(R0
+) by

The Sturm-Liouville operator Xa will play a key role in the present paper.2

It is symmetric and has a largest eigenvalue p(a) with unique positive and
L2-normalized eigen-function xa. The map a\-> p(a) is real-analytic, strictly
convex and strictly increasing, with p(0)<0, l im a^ _«, p(a) = — oo and
l i m a o o p(a) = oo. Define a*, b*, c*e(0, oo) by



The results in Theorem 2 are taken from different papers. The law of large
numbers is proved in Greven and den Hollander,(2) the central limit
theorem in K6nig.(7) The scaling of r*(fi) and 0*(fi) is proved in van der
Hofstad and den Hollander,(4) while the scaling of a*(ft] is in van der
Hofstad, den Hollander, and K6nig.(6)

Moreover,

Furthermore, there exists r*(/?)e(0, oo) such that

where Z£y is the normalizing constant. The Domb-Joyce model is a trans-
formed path measure on the space of n-step paths as in (1.1), where the
Wiener measure is replaced by the simple random walk measure and the
exponent in (1.1) by the exponent in (1.7). It is therefore the discrete
analogue of the Edwards measure. The Domb-Joyce measure gives a
penalty e~2l> for every self-intersection of the path.

We have the following CLT, similar to Theorem 1:

Theorem 2. For every /?e(0, oo), there exist 0*(/7),<r*(/?)e(0, 1],
such that
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1.2. The Domb-Joyce Model

Let (Si) i £^ be simple random walk on Z, starting at the origin. Let
E be expectation with respect to the simple random walk measure. Let P%
be the measure on n-step paths given by
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The important message of Theorems 1 and 2 is that as ft becomes
small, the constants in the CLTs for the Edwards model and the Domb-
Joyce model have the same scaling.

Since the standard deviation c* in Theorem 1 is independent of ft and
c* is the weak interaction limit of the standard deviation in Theorem 2, it
is interesting to know whether c* differs from 1, the standard deviation of
free Brownian motion and simple random walk. In Theorem 3(a-c) below
we will give bounds on the constants a*, b*, and c*.

1.3. Main Theorem: Theorem 3

The following is our main theorem:

Theorem 3.

(a) a*e [2.188, 2.189]
(b) b * e [ 1 . 104, 1.124]
(c) c* e[0.60,0.66].

The proof of Theorem 3 is given in Sections 2-5 and is based on
estimates of the eigenvalues of the differential operator J i f a (recall (1.3)).
Section 2 describes the Sturm-Liouville theory with which we can estimate
the constants and which follows from Sturm-Liouville comparison
theorems. In Sections 3-5 we derive the estimates for a*, b* and c*, respec-
tively. These estimates are computer-assisted and we give exact error
estimates.

The bounds in Theorem 3(a-b) can be made arbitrarily sharp by
making the estimates of the eigenvalues sharper. For the bound in
Theorem 3(c) this is not the case, which is due to the fact that c* in (1.4)
is a more complicated object.

1.4. Discussion

Our main result is that the constant c*, giving the standard deviation
of the endpoint of the path in both the Edwards model and the weakly
interacting Domb-Joyce model, is strictly smaller than 1.

This means that the variances in the CLTs for the Domb-Joyce model
and the Edwards model are discontinuous /? = 0 and that, as the path is
pushed out to infinity on a linear scale, the fluctuations around the
asymptotic mean are squeezed compared to the fluctuations of simple ran-
dom walk, respectively, free Brownian motion. Indeed, for free simple
random walk and free Brownian motion we have E(S2n/n) = £(B2

T/T) = 1



for all n e N and T> 0. Intuitively, this is because the endpoint of the path
lives on a larger scale as free Brownian motion and simple random walk,
respectively. Therefore, we can think of the law of the endpoint of being
less random, which implies that the variance is smaller.

2. PREPARATIONS: LEMMAS 1-4

In this section we shall analyze the zeros of the eigenfunctions of the
Sturm-Liouville differential operator Jfa (recall (1.3)).

Throughout the sequel, we will frequently refer to van der Hofstad and
den Hollander(4) and van der Hofstad, den Hollander, and K6nig.(6) We
will therefore adopt the abbreviations HH and HHK for these references.

2.1. Sturm-Liouville Theory: Lemmas 1-3

Let u - » x a , p ( u ) be the solution of
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with Jta,p(0) = 1 and note that x ' a , p (0) = p (see also HH Section 2.6). This
solution is unique, since the origin is a regular singular point of (2.1) (see
also HH Lemma 19 (i)), but by HH Lemma 20 it need not be in L2(R0

+)!
In fact, the only values of p for which xa,p is in L2( U£) are the eigenvalues
p(k)(a) (k = 0, 1,...), arranged in decreasing order with p(0](a) = p(a) (see
HHK Section 3.1). Define the corresponding normalized eigenfunctions to
be x(

a
k) = xa<p(H(a)/\\xail,«>(a)\\2 (and note that x(0) = xa).
In the sequel we shall use the extreme sensitivity of the tails of xa< p

with respect to a and p to get sharp numerical estimates for the eigenvalues
p(k)(a).

Suppose that u(a, p) < oo is a zero of xa,p. The starting point of our
investigation is the following lemma:

Lemma 1. For all a, peR and u(a, p)«x>,

Proof. The lemma follows from Sturm-Liouville comparison
theorems. See e.g., Coddington and Levinson,(1) p. 212, proof of



be the last zero of u2 — au + p.

Lemma 3. If v^c(a,p) and if x a , p ( v ) and x ' a , p (v ) have the same
sign, then x a , p ( u ) and x ' a , p (u ) have the same sign for all u^-v.

Proof. Easy. See (2.1). |

Lemma 3 will be useful in order to determine the number of zeros of
xa,p from a computer plot of x a , p ( u ] for u in a bounded interval.

2.2. Power Series Approximation: Lemma 4

We end this preparatory section by results that will allow us to deter-
mine the number of zeros of xa,p in a bounded interval.

Use HH (5.23) to write x a , p ( u ) as a power series

Then, for every ae R, p\->n(a,p) is a step function that makes a jump
precisely at the eigenvalues p ( k ) (a) , i.e., n ( a , p ) = k for p e [ p ( k ) ( a ] ,
p(k-l\a)} (A:3*0).

Proof. See Coddington and Levinson(1) Theorem 2.1 on p. 212,
together with Lemma 1. |

Let

Theorem 2.1, where there is a proof for the regular case. The proof for the
regular singular case is similar if we apply the results to ya,p(u) = xa<p(u)l
xa<p(e), where e>0 is so small that x a , p ( u ) has no zeros on [0, e]. This
proves that the zeros of ya , p are monotone on [e, oo), which implies the
lemma. |

Lemma 1 states that if there is a zero for xa,p, then this zero will move
to the left as p decreases or a increases and vice versa. Furthermore,
xa,p(0) = l prevents zeros from moving to the negative axis. Hence, xa,p

can only get more zeros as p decreases or a increases.
From Lemma 1 follows a stronger statement:

Lemma 2. Let n = n(a,p) be defined by
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Proof. Use Stirling's inequality

where Ck is given by
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where the gn's satisfy the recurrence relation

with g0= 1, g_1 = g_2 = 0. By induction on n, it is easy to derive the
following bounds:

where K(a, p) satisfies

In the sequel we shall take

(This corresponds to bounding the first term in (2.8) by 3, the second by
5 and the third by 1/6. This choice turns out to be good enough for the
choices of a and p that we will use in the sequel.)

In order to estimate how well the power series with a finite number of
terms approximates x a , p ( u ) on a bounded w-interval, we have to know
what the contribution is of the remote summands in (2.5).

Lemma 4. For every ke N,p, aeR and A:eR + ,
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and (2.7), to get

We have now completed our preparation and can start with the proof
of Theorem 3.

3. PROOF OF THEOREM 3 (a )

Fix p = 0 and N = 8, A: = 350. Use Lemma 2 to see that if xa,0 has a
zero then a>a*, while if xa,0 has no zero then a<a*.

Next, (2.9) gives that

Hence, in (2.11),

Thus, by (2.10), the difference of xa ,p and the power series approximation
of x a , p ( u ) with 350 terms is smaller than or equal to 2 x 10~89 (for these
values of N, a, p and k).

The proof now follows from Fig. 1, Lemma 3 and the fact that
c(a, 0) = a<N=8 for a<2.2 (recall (2.4)).

Fig. 1. The power series approximation of xa,0 with a = 2.188, respectively a = 2.189 and
N = 8, k = 350.



Here the third equality uses (1.3), while the fourth equality again follows
from partial integration.

(Note that the boundary terms at infinity disappear by the super-exponen-
tial decay of xa* in HH Lemma 20.)

To get the lower bound for b*, use ( 1 / b * ) = p'(a*) and recall (4.3) and
write out using partial integration:

since

where we used (1.3) and p(a*) = 0. Now, integrate by parts to get
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4. PROOF OF THEOREM 3(b)

4.1. The Lower Bound for b*

First we derive an equality, (4.2) below, that we need later on to prove
the lower bound for b*.

Compute



Iterating (4.9) seven times, each time with the improved lower bound in the
r.h.s., we arrive at the lower bound in Theorem 3(b).

Now, insert (4.6) into the r.h.s. of (4.9) and use Theorem 3(a) to get

or

Rewrite this to get

However, (4.6) can be improved using (4.2), partial integration and
the Cauchy-Schwarz inequality:

which together with Theorem 3(a) gives

Therefore, a rough lower bound for b* is
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4.2. The Upper Bound for b*

To prove the upper bound for b*, use the fact that a\-*p'(a) is
increasing, the relation b* = [p'(a*)]-1 (see HH Theorems 5 and 6 and
Theorem 3(a)), the mean value theorem and Theorem 3(a) to get that

Furthermore, c(a, p) <3 < N = 9 for these values of a, p (recall (2.4)), so
that Lemma 3 applies. Recall (2.9) to get

Hence (2.11) gives

Thus, by (2.10), the difference between xa p(u) and the power series
approximation of xa,p(u) with 350 terms is smaller than or equal to
2 x 10-71 (for these values of N, a, p and k).

Now use Lemma 2 and Fig. 2 to get that

Fig. 2. The power series approximation of ,xa,p with (a, p) = (2.188, —0.0096), respectively,
( a , p ) = (2.178, -0.0007) and N = 9,k = 350.
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since xa,p has one zero for (a, p) = (2.187, -0, 0096) (note that x a , p ( N ) <0
for (a,p) = (2.187, -0,0096)), while xa ,p has no zero for (a, p) = (2.177,
-0,0007) (note that x a , p ( N ) > 0 for (a,p) = (2.187, -0,0007)).

5. PROOF OF THEOREM 3(c)

In Sections 5.1 and 5.2 we prove the upper bound for c*, in Section 5.3
the lower bound for c*.

5.1. The Upper Bound for c*: Lemmas 5 and 6

By differentiating (4.3) w.r.t. a, we get

where ya eL2(^} is the function

Differentiating the relation Ixa 1)2 = 1 with respect to a, we get

Hence, we can rewrite (5.1) as

Note that by (4.3) also u-> (u — p ' (a) ) xa(u) is orthogonal to xa. Further-
more, differentiating the eigenvalue relation Wxa = p(a)xa with respect to
a, we get that ya satisfies the inhomogeneous differential equation

where
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HH Lemma 20 gives that all the p ( k )(a)'s have multiplicity 1. The
Rayleigh representation for p ( 1 ) (a) reads

Hence, we have that for all xeL2(Uo) such that <xa , y>2 = 0,

Therefore, we are in the situation of Griffel(3) Proposition 10.31. Apply this
proposition to get

Substitute (5.6) and use (5.3) to get

Proof. See Section 5.2 below. |

5.2. Proof of Lemma 6: Spectral Analysis of Xa*

In this section we shall prove bounds for p ( 1 )(2.2), using computer
plots of xa,p for a = 2.2 and suitable values of p, Lemma 2 and the error
estimates in Lemma 4. Lemma 3 guarantees that there are exactly as many
zeros as seen in the plot.

In the same way as in (4.3) below, we have

where x(
a

k) is the eigenfunction corresponding to the eigenvalue p ( k )(a)
(recall HHK Section 3.1). Hence, all the eigenvalues are increasing in a.
Therefore we can take a — 2.2.

Because of (4.14) and (5.11) below, the following two inequalities suf-
fice for the upper bound in Theorem 3(c):

Proof. See (4.2) and Theorems 3(a-b). |



Then y is orthogonal to xa (see (4.3)).
By (5.4)-(5.5) and Griffel(3) Proposition 10.31, it follows that

Therefore, by (2.10), the difference between x a , p ( u ) and the power series
approximation of xa , p(u) with 350 terms is smaller than or equal to
6x10-60.

In Fig. 3 the sum of the first 350 terms of the power series of x a , p ( u ) is
plotted for a — 2.2 and p = —3.3, respectively, p = —3.4. Since c(2.2, —3.4) <
N=8 and c(2.2, -3.3)<N=8 (recall (2.4)), the number of zeros of
X2.2 -3.4 is 1 and the number of zeros of x2.2 -3.3 is 2 by Lemma 3. This
proves that p(1)(2.2)e[-3.4,-3.3].

5.3. The Lower Bound for c*

For some s > 0, let

Again we pick N = 8 and k = 350. Then by (2.11),

By (2.8)

Fig. 3. The power series approximation of xa,p with (a, p) = (2.2, — 3.4), respectively,
(2.2, -3.3) and k = 350, N = 8.

1308 van der Hofstad



Constants in the CLT for the 1D Edwards Model 1309

(recall (5.6)). Substitution of x = y (see (5.14)) gives

Next, compute for a = a*,

where we use that p(a*) — 0 (see (1.4)). Hence, by partial integration,

Furthermore, use (4.3) and (4.2) to compute

Substituting (5.17)-(5.19) into (5.16) and maximizing over s, we get

The lower bound now follows from the definition c*2 = (p"(a*)/p'(a*)3)
(recall (1.4)) and Theorem 3(a-b)

Note. Just prior to completion of this paper, we received a letter
from John Westwater explaining a different functional analytic method to
obtain sharp numerical estimates on a*, b*, c*. Rather than working with
the Sturm-Liouville differential Eq. (2.1), he uses the variational problem
in Westwater(8) and a truncation of the minimizer of this variational
problem of an expansion into Laguerre polynomials. His method gives
rigorous upper bounds on a*. All other estimates are non-rigorous for lack
of error estimates. The values found are fully in agreement with the bounds
in Theorem 3(a-c).
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